Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry

نویسندگان

  • Julian A. Codelli
  • Jeremy M. Baskin
  • Nicholas J. Agard
  • Carolyn R. Bertozzi
چکیده

The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed "click chemistry", is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Homologation Approach to the Synthesis of Difluorinated Cycloalkynes

Difluorinated cyclooctynes are important reagents for labeling azido-biomolecules through copper-free click chemistry. Here, a safe, scalable synthesis of a difluorinated cyclooctyne is reported, which involves a key homologation/ring-expansion reaction. Sequential ring expansions were also employed to synthesize and study a novel difluorinated cyclononyne.

متن کامل

Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry

The 1,3-dipolar cycloaddition of cyclooctynes with azides, also called "copper-free click chemistry", is a bioorthogonal reaction with widespread applications in biological discovery. The kinetics of this reaction are of paramount importance for studies of dynamic processes, particularly in living subjects. Here we performed a systematic analysis of the effects of strain and electronics on the ...

متن کامل

Difluorobenzocyclooctyne: Synthesis, Reactivity, and Stabilization by β-Cyclodextrin

Highly reactive cyclooctynes have been sought as substrates for Cu-free cycloaddition reactions with azides in biological systems. To elevate the reactivities of cyclooctynes, two strategies, LUMO lowering through propargylic fluorination and strain enhancement through fused aryl rings, have been explored. Here we report the facile synthesis of a difluorobenzocyclooctyne (DIFBO) that combines t...

متن کامل

Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers.

Bifunctional, fluorinated cyclooctynes were used for the in situ "click" crosslinking of azide-terminated photodegradable star polymers, yielding photodegradable polymeric model networks with well-defined structures and tunable gelation times.

متن کامل

A Hydrophilic Azacyclooctyne for Cu-Free Click Chemistry

Biomolecules labeled with azides can be detected through Cu-free click chemistry with cyclooctyne probes, but their intrinsic hydrophobicity can compromise bioavailability. Here, we report the synthesis and evaluation of a novel azacyclooctyne, 6,7-dimethoxyazacyclooct-4-yne (DIMAC). Generated in nine steps from a glucose analogue, DIMAC reacted with azide-labeled proteins and cells similarly t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2008